Самостоятельный газовый заряд. Самостоятельные и несамостоятельные разряды. «Изучение газового разряда с помощью тиратрона»

Тема 7. Электропроводность жидкостей и газов.

§1. Электрический ток в газах.

§2. Несамостоятельный и самостоятельный газовые разряды.

§3. Виды несамостоятельного разряда и их техническое использование.

§4. Понятие о плазме.

§5. Электрический ток в жидкостях.

§6. Законы электролиза.

§7. Технические применения электролиза (самостоятельно).

Электрический ток в газах.

В обычных условиях газы являются диэлектриками и становятся проводниками лишь тогда, когда они каким-то образом ионизированы. Ионизаторами могут служить рентгеновские лучи, космические лучи, ультрафиолетовые лучи, радиоактивное излучение, интенсивное нагревание и др.

Процесс ионизации газов заключается в том, что под действием ионизатора от атомов отщепляется один или несколько электронов. В результате этого вместо нейтрального атома возникают положительный ион и электрон.

Электроны и положительные ионы, возникшие во время действия ионизатора, не могут долго существовать раздельно и, воссоединяясь, вновь образуют атомы или молекулы. Это явление называется рекомбинацией .

При помещении ионизированного газа в электрическое поле на свободные заряды действуют электрические силы и они дрейфуют параллельно линиям напряжённости – электроны и отрицательные ионы к аноду (электрод некоторого прибора, присоединённый к положительному полюсу источника питания), положительные ионы – к катоду (электрод некоторого прибора, присоединённый к отрицательному полюсу источника тока). На электродах ионы превращаются в нейтральные атомы, отдавая или принимая электроны, тем самым замыкая цепь. В газе возникает электрический ток. Электрический ток в газах называется газовым разрядом . Таким образом, проводимость газов имеет электронно-ионный характер .

Несамостоятельный и самостоятельный газовые разряды.

Соберём электрическую цепь, содержащую источник тока, вольтметр , амперметр и две металлические пластины, разделённые воздушным промежутком.

Если поместить вблизи воздушного промежутка ионизатор , то в цепи возникнет электрический ток, исчезающий с действием ионизатора.

Электрический ток в газе с несамостоятельной проводимостью называется несамостоятельным газовым разрядом . График зависимости разрядного тока от разности потенциалов между электродами – вольтамперная характеристика газового разряда:

ОА – участок на котором соблюдается закон Ома. Только часть заряженных частиц доходит до электродов, частьрекомбинирует;

АВ – пропорциональность закона Ома нарушается и, начиная с ток не изменяется. Наибольшую силу тока, возможную при данном ионизаторе называют током насыщения ;


ВС –самостоятельный газовый разряд , в этом случае газовый разряд продолжается и после прекращения действия внешнего ионизатора за счет ионов и электронов, возникших в результате ударной ионизации (ионизации эл. удара); возникает при увеличении разности потенциалов между электродами (возникает электронная лавина ).

Газы при не слишком высоких температу­рах и при давлениях, близких к атмосфер­ному, являются хорошими изоляторами. Если поместить в сухой атмосферный воздух, заряженный электрометр, то его заряд долго остается неизменным. Это объясняется тем, что га­зы при обычных условиях состоят из ней­тральных атомов и молекул и не содержат свободных зарядов (электронов и ионов). Газ становится проводником электричест­ва только, когда некоторая часть его молекул ионизуется. Для ионизации газ надо подвергнуть воздействию какого-либо ионизатора: например, электрический разряд, рентгеновское излучение, радиации или УФ-излучение, пламя свечи и т.д. (в последнем случае электро­проводность газа вызвана нагреванием).

При ионизации газов происходит вырывание из внешней электронной оболочки атома или молекулы одного или нескольких электронов, что приводит к об­разованию свободных электронов и поло­жительных ионов. Электроны могут при­соединяться к нейтральным молекулам и атомам, превращая их в отрицательные ионы. Следовательно, в ионизованном газе имеются положительно и отрицательно заряженные ионы и свободные электроны. Электрический ток в газах на­зывается газовым разрядом. Т.о., ток в газах создается ионами обоих знаков и электронами. Газовый разряд при таком механизме будет сопровождаться переносом вещества, т.е. ионизированные газы относятся к проводникам второго рода.

Для того чтобы оторвать от молекулы или атома один электрон, необходимо совершить оп­ределенную работу А и, т.е. затратить оп­ределенную энергию. Эту энер­гию называют энергией ионизации , значения которой для атомов различных веществ лежат в преде­лах 4÷25 эВ. Количественно процесс ионизации принято характеризовать величиной, которая называется потенциал ионизации :

Одновременно с процессом ионизации в газе всегда идет и обратный процесс – процесс рекомбинации: положительные и отрицательные ионы или положительные ионы и электроны, встречаясь, воссоединя­ются между собой с образованием ней­тральных атомов и молекул. Чем больше ионов возникает под действием ионизато­ра, тем интенсивнее идет и процесс ре­комбинации.

Строго говоря, электропроводность га­за никогда не равна нулю, так как в нем всегда имеются свободные заряды, обра­зующиеся в результате действия излучения радиоактивных веществ, имею­щихся на поверхности Земли, а также космического излучения. Интен­сивность ионизации под действием указан­ных факторов невелика. Эта незначитель­ная электропроводность воздуха является причиной утечки зарядов наэлектризованных тел да­же при хорошей их изоляции.

Характер газового разряда определяется составом газа, его температурой и давлением, размерами, конфигурацией и материалом электродов, а так же приложенным напряжением и плотностью тока.



Рассмотрим цепь, содержащую газо­вый промежуток (рис.), подвергаю­щийся непрерывному, постоянному по ин­тенсивности воздействию ионизатора. В результате действия ионизатора газ приобретает некоторую электропровод­ность и в цепи потечет ток. На рис приведены вольт-амперные характеристики (зависимость тока от приложенного напряжения) для двух ионизаторов. Производительность (число пар ионов произведенных ионизатором в газовом промежутке за 1 секунду) второго ионизатора больше чем первого. Будем считать, что производительность ионизатора величина постоянная и равная n 0 . При не очень низком давлении практически все отщепившиеся электроны захватываются нейтральными молекулами, образуя отрицательно заряженные ионы. С учетом рекомбинации, примем, что концентрации ионов обоих знаков одинаковы и равны n. Средние скорости дрейфа ионов разных знаков в электрическом поле разные: , . b - и b + – подвижности ионов газа. Теперь для области I, c учетом (5), можно записать:

Как видно, в области I с увеличением напряжения ток возрастает, так как растет скорость дрейфа. Число пар рекомбинирующих ионов с ростом их скорости, при этом будет уменьшаться.

Область II – область тока насыщения – все созданные ионизатором ионы достигают электродов, не успевая рекомбинировать. Плотность тока насыщения

j н = q n 0 d, (28)

где d – ширина газового промежутка (расстояние между электродами). Как видно из (28) ток насыщения является мерой ионизирующего действия ионизато­ра.



При напряжении больше U п p (область III) скорость электронов достигает такой величины, что при столкновении с нейтральными молекулами они способны вызвать ударную ионизацию. В результате образуется дополнительно Аn 0 пар ионов. Величина А называется коэффициентом газового усиления . В области III этот коэффициент не зависит от n 0 , но зависит от U. Т.о. заряд, достигающий электродов при постоянном U прямо пропорционален производительности ионизатора – n 0 и напряжению U. По этой причине область III называется областью пропорциональности. U пр – порог пропорциональности. Коэффициент газового усиления А имеет значения от 1 до 10 4 .

В области IV, области частичной пропорциональности, коэффициент газового усиления начинает зависеть от n 0. Эта зависимость растет с ростом U. Ток резко увеличивается.

В диапазоне напряжений 0 ÷ U г, ток в газе существует только при действующем ионизаторе. Если дейст­вие ионизатора прекратить, то прекращается и раз­ряд. Разряды, существующие только под действием внешних ионизаторов, называ­ются несамостоятельными.

Напряжение U г – порог области, области Гейгера, которая соответствует состоянию, когда процесс в газовом промежутке не исчезает и после выключения ионизатора, т.е. разряд приобретает характер самостоятельного разряда. Первичные ионы только дают толчок для возникновения газового разряда. В этой области способность ионизировать приобретаю уже и массивные ионы обоих знаков. Величина тока не зависит от n 0 .

В области VI напряжение настолько велико, что разряд, однажды возникнув, больше не прекращается – область непрерывного разряда.

Электрическим током называют поток, который обусловлен упорядоченным движением электрически заряженных частиц. Движение зарядов принято за направление электрического тока. Электрический ток может быть кратковременным и долговременным.

Понятие электрического тока

При грозовом разряде может возникнуть электрический ток, который называют кратковременным. А для поддержания тока в течение длительного времени необходимо наличие электрического поля и свободных носителей электрического заряда.

Электрическое поле создают тела, заряженные разноименно. Силой тока называют отношение заряда, переносимое через поперечное сечение проводника за интервал времени, к этому интервалу времени. Измеряется она в Амперах.

Рис. 1. Формула силы тока

Электрический ток в газах

Молекулы газа в обычных условиях не проводят электрический ток. Они являются изоляторами (диэлектриками). Однако, если изменить условия окружающей среды, то газы могут стать проводниками электричества. В результате ионизации (при нагреве или под действием радиоактивного излучения) возникает электрический ток в газах, который часто заменяют термином «электрический разряд».

Самостоятельные и несамостоятельные газовые разряды

Разряды в газе могут быть самостоятельными и несамостоятельными. Ток начинает существовать, когда появляются свободные заряды. Несамостоятельные разряды существуют пока на него действует сила извне, то есть внешний ионизатор. То есть, если внешний ионизатор перестал действовать, то и ток прекращается.

Самостоятельный разряд электрического тока в газах существует даже после прекращения действия внешнего ионизатора. Самостоятельные разряды в физике подразделяются на тихий, тлеющий, дуговой, искровой, коронный.

  • Тихий – самый слабый из самостоятельных разрядов. Сила тока в нем очень мала (не более 1 мА). Он не сопровождается звуковыми или световыми явлениями.
  • Тлеющий – если увеличить напряжение в тихом разряде, он переходит на следующий уровень – в тлеющий разряд. В этом случае появляется свечение, которое сопровождается рекомбинацией. Рекомбинация – обратный процесс ионизации, встреча электрона и положительного иона. Применяется в бактерицидных и осветительных лампах.

Рис. 2. Тлеющий разряд

  • Дуговой – сила тока колеблется от 10 А до 100 А. Ионизация при этом равна почти 100%. Этот тип разряда возникает, например, при работе сварочного аппарата.

Рис. 3. Дуговой разряд

  • Искровой – можно считать одним из видов дугового разряда. Во время такого разряда за очень короткое время протекает определенное количество электричества.
  • Коронный разряд – ионизация молекул происходит вблизи электродов с малыми радиусами кривизны. Этот вид заряда происходит тогда, когда напряженность электрического поля резко изменяется.

Что мы узнали?

Сами по себе атомы и молекулы газа нейтральны. Они заряжаются при воздействии извне. Если говорить кратко об электрическом токе в газах, то он представляет собой направленное движение частиц (положительных ионов к катоду и отрицательных ионов к аноду). Также важным является, что при ионизации газа, его проводящие свойства улучшаются.

Тест по теме

Оценка доклада

Средняя оценка: 4.1 . Всего получено оценок: 436.

Процесс прохождения электрического тока через газ называется газовым разрядом. Если электропроводность газа создается внешними ионизаторами, то электрический ток, возникающий в нем, называется несамостоятельным газовым разрядом. С прекращением действия внешних ионизаторов несамостоятельный разряд прекращается. Несамостоятельный газовый разряд не сопровождается свечением газа.

Ниже изображен график зависимости силы тока от напряжения при несамостоятельном разряде в газе. Для построения графика использовалась стеклянная трубка с двумя впаянными в стекло металлическими электродами.

При некотором определенном напряжении наступает такой момент, при котором все заряженные частицы, образующиеся в газе ионизатором за секунду, достигают за это же время электродов. Дальнейшее увеличение напряжения уже не может привести к увеличению числа переносимых ионов. Ток достигает насыщения.

Самостоятельный газовый разряд

Электрический разряд в газе, сохраняющийся после прекращения действия внешнего ионизатора, называется самостоятельным газовым разрядом . Для его осуществления необходимо, чтобы в результате самого разряда в газе непрерывно образовывались свободные заряды. Основным источником их возникновения является ударная ионизация молекул газа.

Если после достижения насыщения продолжать увеличивать разность потенциалов между электродами, то сила тока при достаточно большом напряжении станет резко возрастать (график 2).

Это означает, что в газе появляются дополнительные ионы, которые образуются за счет действия ионизатора. Сила тока может возрасти в сотни и тысячи раз, а число заряженных частиц, возникающих в процессе разряда, может стать таким большим, что внешний ионизатор будет уже не нужен для поддержания разряда. Поэтому ионизатор теперь можно убрать.

Каковы же причины резкого увеличения силы тока при больших напряжениях? Рассмотрим какую либо пару заряженных частиц (положительный ион и электрон), образовавшуюся благодаря действию внешнего ионизатора. Появившийся таким образом свободный электрон начинает двигаться к положительному электроду - аноду, а положительный ион - к катоду. На своем пути электрон встречает ионы и нейтральные атомы. В промежутках между двумя последовательными столкновениями энергия электрона увеличивается за счет работы сил электрического поля.

Чем больше разность потенциалов между электродами, тем больше напряженность электрического поля. Кинетическая энергия электрона перед очередным столкновением пропорциональна напряженности поля и длине свободного пробега электрона: MV 2 /2=eEl. Если кинетическая энергия электрона превосходит работу A i , которую нужно совершить, чтобы ионизировать нейтральный атом (или молекулу), т.е. MV 2 >A i , то при столкновении электрона с атомом (или молекулой) происходит его ионизация. В результате вместо одного электрона возникают два (налетающий на атом и вырванный из атома). Они, в свою очередь, получают энергию в поле и ионизуют встречные атомы и т.д.. Вследствие этого число заряженных частиц быстро нарастает, возникает электронная лавина. Описанный процесс называют ионизацией электронным ударом.

Но одна ионизация электронным ударом не может обеспечить поддержания самостоятельного заряда. Действительно, ведь все возникающие таким образом электроны движутся по направлению к аноду и по достижении анода «выбывают из игры». Для поддержания разряда необходима эмиссия электронов с катода («эмиссия» означает «испускание»). Эмиссия электрона может быть обусловлена несколькими причинами.

Положительные ионы, образовавшиеся при столкновении электронов с нейтральными атомами, при своем движении к катоду приобретают под действием поля большую кинетическую энергию. При ударах таких быстрых ионов о катод с поверхности катода выбиваются электроны.

Кроме того, катод может испускать электроны при нагревании до большой температуры. Этот процесс называется термоэлектронной эмиссией. Его можно рассматривать как испарение электронов из металла. Во многих твердых веществах термоэлектронная эмиссия происходит при температурах, при которых испарение самого вещества еще мало. Такие вещества и используются для изготовления катодов.

При самостоятельном разряде нагрев катода может происходить за счет бомбардировки его положительными ионами. Если энергия ионов не слишком велика, то выбивания электронов с катода не происходит и электроны испускаются вследствие термоэлектронной эмиссии.


Газы при не слишком высоких температурах и при давлениях, близких к атмосферному, являются хорошими изоляторами. Это объясняется тем, что газы при обычных условиях состоят из нейтральных атомов и молекул и не содержат свободных зарядов (электронов и ионов). Газ становится проводником электричества, когда некоторая часть его молекул ионизуется, Для этого газ надо подвергнуть действию какого-либо ионизатора (например, использовать пламя свечи, ультрафиолетовое и рентгеновское излучения, g-кванты, потоки электронов, протонов, a-частиц и т. д). Энергия ионизации, атомов различных газов лежит в пределах 4 - 25 эВ. В ионизованном газе появляются заряженные частицы, способные двигаться под действием электрического поля - положительные и отрицательные ионы и свободные электроны.

Прохождение электрического тока через газы называется газовым разрядом .

Одновременно с процессом ионизации газа всегда идет и обратный процесс - процесс рекомбинации : положительные и отрицательные ионы, положительные ионы и электроны, встречаясь, соединяются между собой с образованием нейтральных атомов и молекул. Баланс их скоростей определяет концентрацию заряженных частиц в газе. Процессы рекомбинации ионов, также как и возбуждение ионов, не приводящее к ионизации, приводят к свечению газа, цвет которого определяется свойствами газа.

Характер газового разряда определяется составом газа, его температурой и давлением, размерами, конфигурацией и материалом электродов, приложенным напряжением, плотностью тока и т. д.


Рассмотрим цепь, содержащую газовый промежуток, подвергающийся непрерывному, постоянному по интенсивности воздействию внешнего ионизатора.

В результате ионизации газа и в цепи потечет ток, зависимость которого от приложенного напряжения дана на рис.

На участке кривой ОА ток возрастает пропорционально напряжению, т. е. выполняется закон Ома. При дальнейшем увеличении напряжения закон Ома нарушается: рост силы тока замедляется (участок АВ) и, наконец, прекращается совсем (участок ВС). Т.е. получаем ток насыщения, величина которого определяется мощностью ионизатора Это достигается тогда, когда все ионы и электроны, создаваемые внешним ионизатором за единицу времени, за это же время достигают электродов. Если в режиме ОС прекратить действие ионизатора, то прекращается и разряд. Разряды, существующие только под действием внешних ионизаторов, называются несамостоятельными . При дальнейшем увеличении напряжения между электродами сила тока вначале медленно (участок CD), а затем резко (участок DE) возрастает и разряд становиться самостоятельным . Разряд в газе, сохраняющийся после прекращения действия внешнего ионизатора, называется самостоятельным .

Механизм возникновения самостоятельного разряда следующий. При больших напряжениях возникающие под действием внешнего ионизатора электроны, сильно ускоренные электрическим полем сталкиваясь с молекулами газа, ионизируют их, в результате чего образуются вторичные электроны и положительные ионы. Положительные ионы двигаются к катоду, а электроны - к аноду. Вторичные электроны вновь ионизируют молекулы газа, и, следовательно, общее количество электронов и ионов будет возрастать по мере продвижения электронов к аноду лавинообразно. Это является причиной увеличения электрического тока на участке CD . Описанный процесс называется ударной ионизацией . Ударная ионизация под действием одних лишь электронов недостаточна для поддержания разряда при удалении внешнего ионизатора. Для поддержания разряда необходимо, чтобы электронные лавины «воспроизводились», т. е. чтобы в газе под действием каких-то процессов возникали новые электроны. Это наступает при значительных напряжениях между электродами газового промежутка, когда к катоду устремляются лавины положительных ионов, которые выбивают из него электроны. В этот момент, когда кроме электронных лавин возникают еще и ионные, сила тока растет уже практически без увеличения напряжения (участок DE на рис.), т.е. возникает самостоятельный разряд. Напряжение, при котором возникает самостоятельный разряд, называется напряжением пробоя .

Необходимо отметить, что при разряде в газах реализуется особое состояние вещества, называемое плазмой. Плазмой называется сильно ионизованный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. Различают высокотемпературную плазму, возникающую при сверхвысоких температурах, и газоразрядную плазму, возникающую при газовом разряде. Плазма характеризуется степенью ионизации a - отношением числа ионизованных частиц к полному их числу в единице объема плазмы. В зависимости от величины a говорят о слабо (а составляет доли процента), умеренно (несколько процентов) и полностью (близко к 100%) ионизованной плазме.

Различают четыре типа самостоятельного разряда: тлеющий, искровой, дуговой и коронный .

1. Тлеющий разряд возникает при низких давлениях. Если к электродам, впаянным в стеклянную трубку длиной 30 - 50 см, приложить постоянное напряжение в несколько сотен вольт, постепенно откачивая из трубки воздух, то при давлении ~ 5,3 - 6,7 кПа (несколько мм рт ст) возникает разряд в виде светящегося извилистого шнура красноватого цвета, идущего от катода к аноду. При дальнейшем понижении давления (~13 Па) разряд имеет следующую структуру.

Непосредственно к катоду прилегает темный тонкий слой 1 – астоново темное пространство , далее следует тонкий светящийся слой 2 - первое катодное свечение или катодная пленка , затем следует темный слой 3 - катодное (круксовое) темное пространство , переходящее в дальнейшем в светящийся слой 4 - тлеющее свечение , имеющее резкую границу со стороны катода, постепенно исчезающую со стороны анода. Оно возникает из-за рекомбинации электронов с положительными ионами. С тлеющим свечением граничит темный промежуток 5-фарадеево темное пространство , за которым следует столб ионизованного светящегося газа 6 - положительный столб . Положительный столб существенной роли в поддержании разряда не имеет. Приложенное напряжение распределяется вдоль разряда неравномерно. Практически почти все падение потенциала приходится на три первых слоя и называется катодным падением потенциала .

Механизм образования слоев следующий. Положительные ионы вблизи катода, ускоренные катодным падением потенциала, бомбардируют катод и выбивают из него электроны. В темном астоновом пространстве электроны разгоняются и возбуждают молекулы, которые начинают испускать свет, образуя катодную пленку 2. Электроны пролетевшие без столкновений пленку 2 ионизируют молекулы газа за этой пленкой. Образуется много положительных и отрицательных зарядов. При этом интенсивность свечения уменьшается. Эта область представляет собой катодное (круксовое) темное пространство 3. Электроны, возникшие в катодном темном пространстве, проникают в область 4 тлеющего свечения, которое обусловлено их рекомбинацией с положительными ионами. Далее оставшиеся электроны и ионы (их мало) проникают путем диффузии в область 5 – фарадеево темное пространство. Оно кажется темным потому, что концентрация рекомбинирующих зарядов мала. В области 5 существует электрическое поле, которое разгоняет электроны и в области положительного столба 6 они производят ионизацию, в результате чего образуется плазма. Свечение положительного столба в основном связано с переходами возбужденных молекул в основное состояние. Оно имеет характерный для каждого газа цвет. В тлеющем разряде особое значение для его поддержания имеют только три его части - до тлеющего свечения. В катодном темном пространстве происходит сильное ускорение электронов и положительных ионов, выбивающих электроны с катода (вторичная эмиссия). В области тлеющего свечения же происходит ударная ионизация электронами молекул газа. Образующиеся при ударной ионизации положительные ионы устремляются к катоду и выбивают из него новые электроны, которые, в свою очередь, опять ионизируют газ и т. д. Таким образом непрерывно поддерживается тлеющий разряд.

Применение в технике. Свечение положительного столба, имеющее характерный для каждого газа цвет, используется в газоразрядных трубках для создания реклам (неоновые газоразрядные трубки дают красное свечение, аргоновые - синевато-зеленое) и в лампах дневного света.

2. Искровой разряд возникает при больших напряженностях электрического поля (~3 10 б В/м) в газе, находящемся под давлением порядка атмосферного. Объяснение искрового разряда дается на основе стримерной теории, согласно которой возникновению ярко светящегося канала искры предшествует появление слабосветящихся скоплений ионизованного газа - стримеров . Стримеры возникают как в результате образования электронных лавин посредством ударной ионизации, так и в результате фотонной ионизации газа. Лавины, догоняя друг друга, образуют проводящие мостики из стримеров, по которым в следующие моменты времени и устремляются мощные потоки электронов, образующие каналы искрового разряда. Из-за выделения при рассмотренных процессах большого количества энергии газ в искровом промежутке нагревается до очень высокой температуры (примерно 10 4 о C), что приводит к его свечению. Быстрый нагрев газа ведет к повышению давления и возникновению ударных волн, объясняющих звуковые эффекты при искровом разряде. Например, потрескивание в слабых разрядах и мощные раскаты грома в случае молнии.

Применение в технике. Для воспламенения горючей смеси в двигателях внутреннего сгорания и предохранения электрических линий передачи от перенапряжений (искровые разрядники).

3. Дуговой разряд . Если после зажигания искрового разряда от мощного источника постепенно уменьшать расстояние между электродами, то разряд становится непрерывным, т.е. возникает дуговой разряд. При этом ток резко возрастает, достигая сотен ампер, а напряжение на разрядном промежутке падает до нескольких десятков вольт. Дуговой разряд можно получить от источника низкого напряжения, минуя стадию искры. Для этого электроды (например, угольные) сближают до соприкосновения, они сильно раскаляются электрическим током, потом их разводят и получают электрическую дугу. При атмосферном давлении дуговой разряд имеет температуру ~3500 о C. По мере горения дуги на аноде образуется углубление - кратер, являющийся наиболее горячим местом дуги. дуговой разряд поддерживается за счет а интенсивной термоэлектронной эмиссии из катода, а также термической ионизации молекул, обусловленной высокой температурой газа.

Применение - для сварки и резки металлов, получения высококачественных сталей (дуговая печь) и освещения (прожекторы, проекционная аппаратура).

4. Коронный разряд - высоковольтный электрический разряд при высоком (например, атмосферном) давлении в резко-неоднородном поле вблизи электродов с большой кривизной поверхности (например, острия). Когда напряженность поля вблизи острия достигает 30 кВ/м, то вокруг него возникает свечение, имеющее вид короны, чем и вызвано название этого вида разряда. Это явление получило в древности название огней святого Эльма. В зависимости от знака коронирующего электрода различают отрицательную или положительную короны.

Применение - в электрофильтрах, применяемых для очистки промышленных газов от примесей, при нанесении порошковых и лакокрасочных покрытий.